Can the elongated hindwing tails of fluttering moths serve as false sonar targets to divert bat attacks?
نویسندگان
چکیده
It has long been postulated that the elongated hindwing tails of many saturniid moths have evolved to create false sonar targets to divert the attack of echolocation-guided bat predators. However, rigorous echo-acoustic evidence to support this hypothesis has been lacking. In this study, fluttering luna moths (Actias luna), a species with elongated hindwing tails, were ensonified with frequency modulated chirp signals from all angles of orientation and across the wingbeat cycle. High-speed stereo videography was combined with pulse compression sonar processing to characterize the echo information available to foraging bats. Contrary to previous suggestions, the results show that the tail echoes are weak and do not dominate the sonar returns, compared to the large, planar wings and the moth body. However, the distinctive twisted morphology of the tails create persistent echoes across all angles of orientation, which may induce erroneous sonar target localization and disrupt accurate tracking by echolocating bats. These findings thus suggest a refinement of the false target hypothesis to emphasize sonar localization errors induced by the twisted tails, and highlight the importance of physics-based approaches to study the sensory information involved in the evolutionary arms race between moths and their bat predators.
منابع مشابه
Moth tails divert bat attack: evolution of acoustic deflection.
Adaptations to divert the attacks of visually guided predators have evolved repeatedly in animals. Using high-speed infrared videography, we show that luna moths (Actias luna) generate an acoustic diversion with spinning hindwing tails to deflect echolocating bat attacks away from their body and toward these nonessential appendages. We pit luna moths against big brown bats (Eptesicus fuscus) an...
متن کاملTiger moth jams bat sonar.
In response to sonar-guided attacking bats, some tiger moths make ultrasonic clicks of their own. The lepidopteran sounds have previously been shown to alert bats to some moths' toxic chemistry and also to startle bats unaccustomed to sonic prey. The moth sounds could also interfere with, or "jam," bat sonar, but evidence for such jamming has been inconclusive. Using ultrasonic recording and hi...
متن کاملTarget flutter rate discrimination by bats using frequency-modulated sonar sounds: behavior and signal processing models.
This study utilized psychophysical data and acoustical measurements of sonar echoes from artificial fluttering targets to develop insights to the information used by FM bats to discriminate the wingbeat rate of flying insects. Fluttering targets were produced by rotating blades that moved towards the bat, and the animal learned to discriminate between two rates of movement, a reference rate (30...
متن کاملHigh duty cycle echolocation and prey detection by bats.
There are two very different approaches to laryngeal echolocation in bats. Although most bats separate pulse and echo in time by signalling at low duty cycles (LDCs), almost 20% of species produce calls at high duty cycles (HDCs) and separate pulse and echo in frequency. HDC echolocators are sensitive to Doppler shifts. HDC echolocation is well suited to detecting fluttering targets such as fly...
متن کاملTwo-headed butterfly vs. mantis: do false antennae matter?
The colour patterns and morphological peculiarities of the hindwings of several butterfly species result in the appearance of a head at the rear end of the insect's body. Although some experimental evidence supports the hypothesis that the "false head" deflects predator attacks towards the rear end of the butterfly, more research is needed to determine the role of the different components of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of the Acoustical Society of America
دوره 139 5 شماره
صفحات -
تاریخ انتشار 2016